TA NOTES

Find the general solution of the given differential equation
(1). $y^{\prime \prime}+2 y^{\prime}-3 y=0$
(3). $6 y^{\prime \prime}-y^{\prime}-y=0$
(5). $y^{\prime \prime}+5 y^{\prime}=0$
(6). $4 y^{\prime \prime}-9 y=0$
(7). $y^{\prime \prime}-9 y^{\prime}+9=0$
(8). $y^{\prime \prime}-2 y^{\prime}-2 y=0$

Answer: (1). The characteristic equation is

$$
r^{2}+2 r-3=(r-1)(r+3)=0
$$

Thus the possible values of r are $r_{1}=1$ and $r_{2}=-3$, and the general solution of the equation is

$$
y(t)=c_{1} e^{t}+c_{2} e^{-3 t} .
$$

(3). The characteristic equation is

$$
6 r^{2}-r-1=(2 r-1)(3 r+1)=0
$$

Thus the possible values of r are $r_{1}=\frac{1}{2}$ and $r_{2}=-\frac{1}{3}$, and the general solution of the equation is

$$
y(t)=c_{1} e^{-\frac{t}{3}}+c_{2} e^{\frac{t}{2}} .
$$

(5). The characteristic equation is

$$
r^{2}+5 r=r(r+5)=0
$$

Thus the possible values of r are $r_{1}=0$ and $r_{2}=-5$, and the general solution of the equation is

$$
y(t)=c_{1}+c_{2} e^{-5 t}
$$

(6). The characteristic equation is

$$
4 r^{2}-9=0
$$

Thus the possible values of r are $r=\frac{3}{2}$ and $r=-\frac{3}{2}$, and the general solution of the equation is

$$
\begin{gathered}
y(t)=c_{1} e^{\frac{3}{2} t}+c_{2} e^{-\frac{3}{2} t} . \\
1
\end{gathered}
$$

(7). The characteristic equation is

$$
r^{2}-9 r+9=\left(r-\frac{9+3 \sqrt{5}}{2}\right)\left(r-\frac{9-3 \sqrt{5}}{2}\right)=0
$$

Thus the possible values of r are $r_{1}=\frac{9+3 \sqrt{5}}{2}$ and $r_{2}=\frac{9-3 \sqrt{5}}{2}$, and the general solution of the equation is

$$
y(t)=c_{1} e^{\frac{9+3 \sqrt{5}}{2} t}+c_{2} e^{\frac{9-3 \sqrt{5}}{2} t} .
$$

(8). The characteristic equation is

$$
r^{2}-2 r-2=(r-1-\sqrt{3})(r-1+\sqrt{3})=0
$$

Thus the possible values of r are $r_{1}=1-\sqrt{3}$ and $r_{2}=1+\sqrt{3}$, and the general solution of the equation is

$$
y(t)=c_{1} e^{(1-\sqrt{3}) t}+c_{2} e^{(1-\sqrt{3}) t}
$$

Find the general solution of the given differential equation. Sketch the graph of the solution and describe its behavior as t increases
$(10) \cdot y^{\prime \prime}+4 y^{\prime}+3 y=0, \quad y(0)=2, \quad y^{\prime}(0)=-1$
(13). $y^{\prime \prime}+5 y^{\prime}+3 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0$
(16). $4 y^{\prime \prime}-y=0, \quad y(-2)=1, \quad y^{\prime}(-2)=-1$

Answer: (10). The characteristic equation is

$$
r^{2}+4 r+3=0
$$

Thus the possible values of r are $r=-1$ and $r=-3$, and the general solution of the equation is

$$
y(t)=c_{1} e^{-t}+c_{2} e^{-3 t} .
$$

From the initial value, we have

$$
\begin{align*}
& c_{1}+c_{2}=2 \\
& -c_{1}-3 c_{2}=-1 \tag{1}
\end{align*}
$$

hence $c_{1}=\frac{5}{2}$ and $c_{2}=-\frac{1}{2}$. The solution of the equation is

$$
y(t)=\frac{5}{2} e^{-t}-\frac{1}{2} e^{-3 t} .
$$

$y(t) \longrightarrow 0$, as $t \longrightarrow \infty$.
(13). The characteristic equation is

$$
r^{2}+5 r+3=0
$$

Thus the possible values of r are $r=\frac{-5+\sqrt{13}}{2}$ and $r=\frac{-5-\sqrt{13}}{2}$, and the general solution of the equation is

$$
y(t)=c_{1} e^{\frac{-5+\sqrt{13}}{2} t}+c_{2} e^{\frac{-5-\sqrt{13}}{2} t}
$$

From the initial value, we have

$$
\begin{align*}
& c_{1}+c_{2}=1 \\
& \frac{-5+\sqrt{13}}{2} c_{1}+\frac{-5-\sqrt{13}}{2} c_{2}=0 \tag{2}
\end{align*}
$$

hence $c_{1}=\frac{13+5 \sqrt{13}}{26}$ and $c_{2}=\frac{13-5 \sqrt{13}}{26}$. The solution of the equation is

$$
y(t)=\frac{13+5 \sqrt{13}}{26} e^{\frac{-5+\sqrt{13}}{2} t}+\frac{13-5 \sqrt{13}}{26} e^{\frac{-5-\sqrt{13}}{2} t} .
$$

$y(t) \longrightarrow 0$, as $t \longrightarrow \infty$.
(16). The characteristic equation is

$$
4 r^{2}-1=0
$$

Thus the possible values of r are $r=1 / 2$ and $r=-1 / 2$, and the general solution of the equation is

$$
y(t)=c_{1} e^{\frac{1}{2} t}+c_{2} e^{-\frac{1}{2} t} .
$$

From the initial value, we have

$$
\begin{align*}
& c_{1} e^{-1}+c_{2} e=1 \\
& \frac{1}{2} c_{1} e^{-1}-\frac{1}{2} c_{2} e=-1 \tag{3}
\end{align*}
$$

hence $c_{1}=-\frac{e}{2}$ and $c_{2}=\frac{3 e^{-1}}{2}$. The solution of the equation is

$$
-\frac{e}{2} e^{\frac{1}{2} t}+\frac{3 e^{-1}}{2} e^{-\frac{1}{2} t} .
$$

$y(t) \longrightarrow-\infty$, as $t \longrightarrow \infty$.
(18). Find a differential equation whose general solution is $y=c_{1} e^{-t / 2}+c_{2} e^{-2 t}$

Answer: Suppose the equation is

$$
y^{\prime \prime}(t)+a y^{\prime}(t)+b y(t)=0
$$

then the characteristic equation is

$$
r^{2}+a r+b=0
$$

Since $r_{1}=-\frac{1}{2}$ and $r_{2}=-2$ must be two root of the characteristic equation, we have $a=$ $-\left(r_{1}+r_{2}\right)=\frac{1}{2}$ and $b=r_{1} r_{2}=1$. Then the equation

$$
y^{\prime \prime}(t)+\frac{1}{2} y^{\prime}(t)+y(t)=0
$$

is the one we want.
2. Solve the following initial value problem and indicate the interval of existence of solution

$$
\left\{\begin{array}{l}
(2 x-y) d x+(2 y-x) d y=0 \\
y(1)=3
\end{array}\right.
$$

Answer: Compute

$$
\frac{\partial(2 x-y)}{\partial y}=-1=\frac{\partial(2 y-x)}{\partial x}
$$

So the equation is exact. It is easy to see $x^{2}-x y+y^{2}=C$. By $y(1)=3$, we know that $C=7$. So

$$
y=\frac{x \pm \sqrt{28-3 x^{2}}}{2}
$$

Again by $y(1)=3$, we know that the solution is

$$
y=\frac{x+\sqrt{28-3 x^{2}}}{2}
$$

We obtain $-\sqrt{28 / 3} \leq x \leq \sqrt{28 / 3}$ by $28-3 x^{2} \geq 0$. However when $x= \pm \sqrt{28 / 3}$, we have $2 y-x=0$ and so $(2 x-y) d x=0$, it is impossible! So the interval of existence is $(-\sqrt{28 / 3}, \sqrt{28 / 3})$

